

"Effectiveness, Adaptation, and Health Risks of Embalming Fluids: Just What is the Solution?"

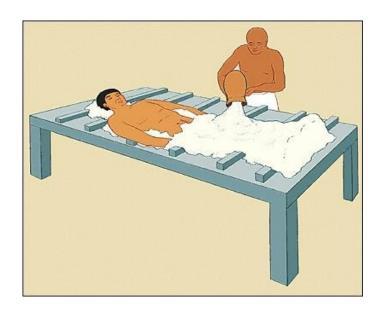
₩ Who am I?

- Started my career at the Dept of Vet
 Anatomy in 2001 as a junior technician
- Currently manage the medical and veterinary dissection suites at the University of Bristol in the UK

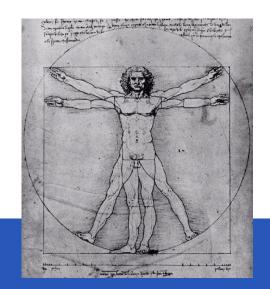
₩ Who am I?

 Joined the Institute of Anatomical Sciences (IAS) in 2001 and became

'Secretary'



- Ancient Egypt 3000BC
- Mummification



Renaissance anatomists- Da Vinci et al

 Leonardo da Vinci (1452 - 1519), was probably the first to inject chemicals/wax into the specimens that he dissected and drew.

- William Harvey(1578 –1657) Harvey was an English physician who was the first to describe accurately how blood was pumped around the body by the heart.
- Dr. Frederick Ruysch (1665-1717)- Danish physician pioneered arterial embalming
- William Hunter(1718–83) The Scottish anatomist, however, is <u>credited</u> with being the first to report fully on arterial and cavity embalming as a way to preserve bodies for burial.

- Dr Thomas Holmes(1817-1899) Generally considered the father of modern embalming.
 - He experimented with preservative chemicals: arsenic, creosote, mercury, turpentine and various forms of alcohol,
 - He reportedly embalmed over 4000 soldiers and officers from the union army during the American Civil War (1861-1865)

- Discovery of Formaldehyde and its effects.
 - August Wilhelm von Hofmann In 1867, the science of embalming took a step forward when the preservative chemical formaldehyde was discovered.
 - more effective and more economical preservative than previous solutions of oils of turpentine, lavender, rosemary or vermillion which had previously been recommended by William Hunter.

Efficacy of Formaldehyde as a preservative?

- Chemical formula CH2O
- Formalin?
- Action- how does it work?
- What other chemicals combine with Formalin to produce best preservation?

How Embalming Fluids have changed to meet the requirements of the profession?

- Introduction of different chemicals to give different effects – fixation or flexibility?
 - Soft embalming techniques –
 Cambridge(cantabrian solution)
 - Theil
 - Use of Fresh/Frozen cadavers in post graduate surgical training courses

Cambridge(cantabrian solution)

 First developed in 1985 by Bari Logan – Reduction in Formalin from 10% to 3% replaced with Methanol.

		g/Kg	ml/L
•	0315 ETHANOL INDUSTRIAL (99% IMS) (74 OP)	394.650 g	500.000 ml
•	0332 FORMALDEHYDE SOLUTION 40% w/v pure	86.347 g	79.000 ml
•	2199 POLYETHYLENEGLYCOL 200	84.000 g	75.000 ml
•	3360 CITRICIDAL	11.100 g	10.000 ml
•	0757 WATER DEIONIZED		336.000 ml

- Results greater flexibility, good fixation, less harmful fumes
- Still being used today

K Theil Solution

Developed in 1992 – Prof W. Thiel, Institute of Anatomy, Karl Franzens University, Graz, Austria.

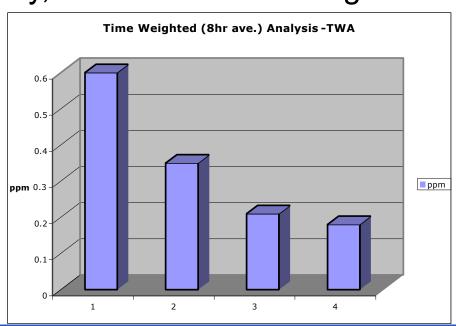
	Arterial infusion	Venous infusion	Tank fluid	Moistening fluid
Hot tap water	6.8 ltr	1.45 ltr	1250 ltr	20 ltr
Boric Acid	250 gr	80 gr	45 kg	600 gr
Ammonium Nitrate	1680 gr	520 gr	150 kg	-
Postassium Nitrate	420 gr	130 gr	75 kg	-
Sodium Sulphite	700 gr	190 gr	105 kg	1 kg
Propylene Glycol	2.5 ltr	780 ml	150 ltr	1 ltr
Stock II	500 ml	190 ml	30 ltr	200 ml
Formalin (8.9 %)	2.1 ltr	1.5 ltr	125 ltr	-
Morpholine	150 ml	110 ml	-	-
Alcohol	1 ltr	1.1 ltr	-	-
Total volume [ltr] ca.	12.5	5	1720	22

- •low-odour embalming technique
- •colour, consistency and transparency of the tissue were very well preserved
- •Superb flexibility comparable with fresh tissue
- •Expensive??

- Health risks associated with Formaldehyde and Embalming fluids in general What can be done to address these risks what does the law allow?
- Law as it stands in EU, UK and USA
- Classification of Formaldehyde
- Proposed changes to classification HSE, SCOEL IOEL Directives
- Views from the UK Anatomy Sector PGaPAC response to the HSE

What alternatives to Formaldehyde 'heavy' embalming solutions are out there?

- Formalin neutralisation
 - Infutrace, Perfect Solution
 - Michigan state University, Medical School using


Monoethanolamine

1= Before engineering controls

2= After engineering controls

3= After Infutrace

4= After MFA

Conclusions – if any? Embalming Fluids- just what is the solution?

- So are there any alternative fixatives as effective as Formaldehyde?
- Can we adapt embalming fluids further or have we gone as far as we can?
- Are the solutions we are using as safe as they can be?

Contacts

Kate Sparey – <u>k.a.sparey@bristol.ac.uk</u>

Steve Gaze – <u>steve.gaze@bristol.ac.uk</u>

Roos Eisma - r.eisma@dundee.ac.uk

THANK YOU

